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1 STATEMENT OF PROBLEM

The Special Sensor Microwave Imager Sounder (SSMIS) was successfully launched aboard the
Defense Meteorology Satellite Program (DMSP) F-16 satellite on October 18, 2003. It combines
the channel frequencies of three previous DMSP instruments (SSMT, SSMT/2, SSM/]) into a single
sensor, and measures the thermally emitted radiation from the Earth at 24 channels from 19 to 183
GHz. For reference purposes, 24 channels are grouped into four sub-types corresponding to the
lower atmospheric sounding (LAS) channels (e.g., channels 1-7), the upper atmospheric sounding
(UAS) channels (e.g., channels 19-24), the imaging (IMA) channels (i.e., channels 8-11, and 17-18)
and the environmental (ENV) channels (e.g., channels 12-16), (Poe et al. 2001).Their specifications
are given in Table 1, the scan geometry and weighting functions are displayed in Figure la and 1b.
As such, the SSMIS offers improved atmospheric temperature soundings, water vapor soundings

and surface observations, in comparison to those of the previous DMSP instruments.
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Figure 1 (a) SSMIS scan geometry. (b) SSMIS weighting functions for a standard atmosphere, (Poe et al., 2001).




TABLE 1 Channel characteristics of F16 SSMIS sensor, (Poe et al., 2001)

Channel Center 3-db Width Freq. Pol. NEDT Sampling
Freq.(GHz) (MH2) Stab.(MHz) (K) Interval(km)

1 50.3 380 10 \ 0.34 37.5

2 52.8 389 10 \ 0.32 37.5

3 53.596 380 10 \ 0.33 37.5

4 54.4 383 10 \ 0.33 37.5

5 55.5 391 10 \ 0.34 37.5

6 57.29 330 10 RCP 0.41 37.5

7 59.4 239 10 RCP 0.40 37.5

8 150 1642(2) 200 H 0.89 12.5

9 183.31+/-6.6 1526(2) 200 H 0.97 12.5

10 183.31+/-3 1019(2) 200 H 0.67 12.5

11 183.31+4/-1 513(2) 200 H 0.81 12.5

12 19.35 355 75 H 0.33 25

13 19.35 357 75 \ 0.31 25

14 22235 401 75 \ 0.43 25

15 37 1616 75 H 0.25 25

16 37 1545 75 \ 0.20 25

17 91.655 1418(2) 100 \ 0.33 12.5

18 91.655 1411(2) 100 H 0.32 12.5

19 63.283248+/- 1.35(2) 0.08 RCP 2.7 75

0.285271
20 60.792668+/- 1.35(2) 0.08 RCP 2.7 75
0.357892

21 60.792668+/- 1.3(4) 0.08 RCP 1.9 75
0.357892+/-0.002

22 60.792668+/- 2.6(4) 0.12 RCP 1.3 75
0.357892+/-0.0055

23 60.792668+/- 7.35(4) 0.34 RCP 0.8 75
0.357892+/-0.016

24 60.792668+/- 26.5(4) 0.84 RCP 0.9 37.5
0.357892+/-0.050
(1) Sampling refers to along scan direction based on 833km spacecraft altitude.
(2) NEDT for instrument temperature 0C and calibration target 260K with integration
times of 8.4 msec for Channels 12-16; 12.6 msec for Channels 1-7, 24; and 25.2 msec for
Channels 19-23 and 4.2 msec for Channels 8-11, 17-18.

Notes (3) Number of sub-bands is indicated by (n) next to individual 3-db width

(4) RCP denotes right-hand circular polarization.

However, the F16 SSMIS displays obvious anomalies in radiances, which have been detected from
the difference between global Radiative Transfer Modelling (RTM) simulated and observed
brightness temperatures (Swadley et al., 2005; Weng et al., 2005; Bell et al., 2005). One powerful
tool that has received considerable attention in NOAA satellite cal/val research is the comparison of
radiances computed from Numerical Weather Prediction (NWP) model analyses with observed

radiances. The major NWP centres make these comparisons on a daily basis for the instrument data



that are assimilated in the models. Although the NWP model and its associated radiative transfer
system have their own biases, the model calculations can be used reference beyond its own bias.
Model versus observation comparisons can be used to determine the bias of one instrument relative
to another or the stability of an instrument over time. Shown in Figure 2 is the difference between
simulated and observed brightness temperatures for F-16 SSMIS 54.4 GHz. The anomaly in SSMIS
radiances is observed and its pattern depends strongly on geolocation and season (Yan and Weng,
2007a).
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Figure 2 The difference between simulated and observed brightness temperatures for Defense Meteorological Satellite
Program (DMSP) F-16 Special Sensor Microwave Imager and Sounder (SSMIS) 54.4 GHz. The largest biases as
colored red result from the contamination of satellite antenna emission. Correcting unintended instrument
contamination is now part of the cal/val process to provide accurate data for use in computerized weather forecast

models

To remove those anomalies, three independent preprocessors for SSMIS radiances are currently
available, at various stages of development (Swadley et al., 2007; Bell et al., 2007; Yan and Weng,
2007a). It is probably fair to say that none of these preprocessors would be described by their



authors as definitive but represent their best efforts to date to correct the instrumental biases evident
in F-16 SSMIS data. There is a desire in the wider assimilation community that we form a strategy
which will result in the establishment of a single datastream of corrected SSMIS radiances which
will incorporate the best corrections we have to date. The purpose of the comparison at NRL will
be to establish, by consensus, what are the best corrections for SSMIS radiances. In this manual,
the NOAA preprocessor for SSMIS radiances developed by Yan and Weng (2007a) is introduced.

2 NOAA SSMIS TDR RECALIBRATION

NESDIS anomaly mitigation preprocessor was designed to work in conjunction with the operational
SSMIS Ground Processing Software (GPS). The intent of the preprocessor was to produce a new
TDR file, with minimal file format and structure changes to be used for subsequent radiance
assimilation and/or distribution in BUFR for the larger community of SSMIS TDR users, i.e., the
NWP radiance assimilation community. NESDIS recalibration processes SSMIS TDR differently

according to lower, upper and imager channels.
2.1 SSMIS Lower Atmospheric Sounding Channels
2.1.1 Removal of warm load anomalies

For an orbit of observations, the solar intrusion results in fluctuations of observed warm counts

(C2™), as shown in Figure 3. In the domain of frequency, those fluctuations represent some higher

frequency components superimposed on CJ” over the corresponding areas, in comparison to the

slow frequency component of one orbit of observations with a period of 102 minutes. So, the
correction of warm count anomaly is made by applying FFT analysis to an orbit of warm target
counts (Yan and Weng, 2007a). There, we can filter out major high- frequency components in CJ"

related to direct solar and stray light contamination and obtain a relatively smooth distribution
forCy™ .
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Figure 3 Time series of Cy,°™, Cy', Cu?, Cw®, Cu ™" at 54.4 GHz during one orbit of observations, where Cy°™ is the

observed radiometric counts of the blackbody target, Cy" the first m-th harmonic components in Cy°* using FFT
harmonic analysis, Cy,“*" the anomaly-reduced warm counts, (Yan and Weng, 2007a). (a) March 20, 2005. (b) June 9,
2005.

As shown in Fig. 3, the newly calibrated counts (C*") capture the basic feature of observed warm

. . . . Ob C .
counts in the absence of solar intrusion. Then, regions where ACw (Cw " - Cwor) exceeds a certain
threshold are reliably identified and the calibration correction is required using the following

equation.

Ty-T Tw T Cs -C
e R S R SN

where Cs, Cc, and Cy denote the counts of earth scene, cold space, and warm target, respectively; Tc
is the deep space cosmic background temperature, and Ty is the brightness temperature of the warm
target, which is determined by the physical temperature (the warm target emissivity is considered
close to unity) measured using Platinum Resistance Thermisters (PRT’s). Note that the

superscription ‘Obs’ is omitted from Cy and other observed parameters.

2.1.2 Reflector emission correction



The SSMIS main reflector is paraboloidal so that the incoming radiation is focused on the
feedhorns which transfer the free-space wave to a guided wave. As the main reflector views earth,
it collects the incoming radiation over an angular distribution defined by the antenna gain pattern,
where the coming radiance is convolved with the gain function of the reflector and is further
focused on a specific feedhorn to produce the antenna temperature of the earth scene. So, the

antenna temperature is given by

T/;:(l_gR)TA"'gRTR (2)
with

2rrw

j j T (0, 0)G(6,0)sin 6 d6 dg

Th="— , 3)
“G(@,go)sine do de
00

2nr
j j T (0,0)G(0,9)sin 6 dO de
TR =0 2rw : (4)
[[c(0.9)sin0 do dp
00

where, G(0,¢) is the gain function of the reflector, with & being the reflector emissivity. Equation

(2) contains the antenna temperature of the earth scene, Ta, whose brightness temperature is
h . . . .

Tg" » Tr, whose physical temperature isT, . Note that the reflector temperature varies with

polarization and frequency.

For LAS channels, the reflector temperatures are computed from the arm temperature with a suitable
adjust (ATRrjcn), 1.€.,

TR,ich (@) =T (@) + ATR,ich (), Q)

6
ATgin(@) =2y + Zajifpa (6)

j=1

where the subscript ‘ich’ represents the ith channel among LAS channels. ATr is determined by
using a group of polynomial expressions in terms of latitude. The fitting coefficients of polynomial
expressions are derived from the training data sets of Tr (and Tarm), and this Tr is generated by

solving (2) with the RTM simulations at several oxygen sounding channels between 54.4 and 59.4



GHz, (Yan and Weng, 2007a). At other LAS channels except for frequencies from to 59.4 GHz, the
reflector temperature is approximated by that at 54.4 GHz (Yan and Weng, 2007a). As an example,

Figure 4 shows the reflector arm temperature, the retrieved and fitted reflector temperatures at 54.4
GHz, on March 20, 2006.
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Figure 4 Comparisons of the observed arm temperature, the retrieved and fitted reflector temperatures at 54.4 GHz

during one orbit of observations on March 20, 2005, (Yan and Weng, 2007a).

2.1.3 Preliminary Assessment of Recalibrated SSMIS Data at LAS Channels

Examination of the performance of recalibrated SSMIS data (CTDR) is made first from their
comparisons with the radiative transfer model simulations and with AMSU observations. Figure 5
displays the difference between CTDR and simulated brightness temperatures (DTB) for F-16
SSMIS 54.4 GHz. Compared to SSMIS TDR data (Fig. 2), the brightness temperature anomalies are
significantly reduced in CTDR data, where absolute biases are typically smaller than 0.5 K over
most of the global areas and standard deviations are usually smaller than 0.3. Figure 6 displays inter-
comparison of SSMIS and N16 AMSU-A in brightness temperatures at 53.6, 54.4, 55.5 and 57.3
GHz. It is recognized that the original SSMIS brightness temperatures are larger than these from
NOAA-16 AMSU by around 2 K, which is consistent with the previous analyses. The SSMIS



brightness temperatures after the recalibration are in agreement with AMSU measurements. The
mean differences in brightness temperatures between calibrated SSMIS and NOAA-16 AMSU
measurements are smaller than 0.5 K at these three frequencies.
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Figure 5 The difference between recalibrated SSMIS observed and simulated brightness temperatures for DMSP F-16
SSMIS 54.4 GHz.
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Figure 6 Inter-comparison of F16 SSMIS and N16 AMSU-A in brightness temperatures at 53.6, 54.4, 55.5 and 57.3
GHz (Yan and Weng, 2007a).

2.2 SSMIS Imager Channels

The SSMIS offers seven window channels (channels 12 — 18) to continue the capability of the
DMSP Special Sensor Microwave Imager (SSM/I) in monitoring and retrieving atmospheric and
surface parameters such as precipitation, sea ice, ocean surface wind speed, columnar integrated
liquid water, land surface temperature and emissivity, and soil moisture (Ferraro er al., 1996; Weng
et al., 1997; Ferraro, 1997; Yan and Weng, 2002; Yan et al., 2004). As analyzed above, F16 SSMIS
brightness temperatures at sounding channels are severely contaminated by anomalous antenna
emission and solar intrusions to its calibration targets. It is important to investigate the quality of
SSMIS imaging channel calibration through intersensor calibration.

2.2.1 Intersensor Calibration Methodology

Recently, Cao et al. (2004) developed a method to predict the time and location of the Simultaneous
Nadir Overpasses (SNO) for the purpose of intercalibration among the different NOAA satellites.
Simultaneous observations between two satellites provide on-orbit monitoring of instrument
performance through bias analysis and determination of instrument non-linearity. For two polar-
orbiting satellites flying at different altitudes, a SNO event is found and a SNO data pair is
generated when they cross each other, where they observe the same earth location at nadir at nearly
the same time. A schematic viewing of the SNO event is shown in Figure 7, where two satellites
(NOAA 16 and NOAA 17) approach other. For F15 and F16 satellites, the intercepting event
happens once every 93.4 days on average. Here, we modify the algorithms for SSMIS and SSM/I

intersensor calibration because both instruments are conically scanning and have more chances for



matching up in space and time. This is called Simultaneous Conical Overpass (SCO).

Figure 7 Schematic viewing the overpasses between two satellites.

2.2.2 SCO Quality Control

In our study, the SCO constraints on temporal and spatial windows are relaxed to have more
matchup data, considering that the matching events mainly occur in high latitudes where surface
and atmosphere are relatively stable. The distance window from two sensors is set to an Earth
ground distance of 12.5 km and the time window is set to 60 seconds. In addition, a new data
collocation technique developed by Icavacci and Cao (2007) is used to reduce the effect of
inhomogeneous surface properties on SCO observations at window channels. This is because
window channels of microwave radiometers have relatively large fields of view and the satellite
measurements near the two different surface boundaries (see ice and water) may display large
contrasts in surface properties (Yan et al., 2004). By using this technique, SCO events over a

location are rejected when their standard deviation is larger than 1 K.

2.2.3 Linear Mapping

In SSMIS calibration, we first tested direct linear mapping between SSMIS imaging channels and
SSM/I using



T/;,ich = iy + Bien T aich» (7)
where «,,and f,, denote the offset and slope correspondingly, and both of them are produced by
using SCO observations between SSMIS and SSM/I; the subscription ‘ich’ is the SSMIS channel
corresponding to each of the seven SSMI-like channels, i.e., 1= 11,12, 13, 15, 14, 18, 17. Table 2

displays the derived offset and slope values.

TABLE 2 Offset and slope values used in (7) for remapping F16 SSMIS antenna temperature at the
seven SSMI-like channels to F15 SSMI antenna temperatures, (Yan and Weng, 2007b).

Frequency(GHz) a B
19.35 (V) -2.03627 1.00623
19.35 (H) 0.00424 1.00027
22.235 (V) -2.52875 0.99642

37(V) -3.86053 1.00550
37 (H) 0.80170 0.99139
91.65 (V) -7.43913 1.03121
91.76 (H) 1.53650 0.99317

2.2.4 Nonlinearity Analysis

Antenna temperature (Ta) including non-linearity term is given as follows.

Ty=Tc +S(Cq _Cc)+ﬂsz(cs —Cc)Cs —Cy) =Ty +4Z, (8)
where

Ty =T
S= - < ,TA,_ =Tc +S(Cs_Cc)aZ=Sz(Cs_Cc)(Cs_CW)-(9)

CW _Cc

In SSMI/S calibration, the nonlinear parameter was not available from the pre-launch analysis.
Those nonlinear parameters for F15 and F16 observations are derived from the SCO observations
between F15 and F16 (Yan and Weng, 2007b), shown in Table 3.

Figures 8(a) - 8(e) show the time series of the linear and nonlinear calibrated SSMIS antenna
temperature biases from 19.35 to 37 GHz, which are calculated from the linear calibration equation,

i.e., ignoring the second term on the right side in (7), and the nonlinear calibration equation using



(7), respectively. One obvious feature is observed from the figures: the SSMIS antenna temperature
biases are significantly reduced and the mean bias is usually smaller than 0.3, as the nonlinear
calibration is applied into both F15 and F16 observations. Therefore, those preliminary results have
demonstrated that the nonlinearity seems to be non-negligible in future SSM/I and SSMIS

reprocessing.

Table 3 Nonlinear parameters () in (1) at frequencies from 19.35 to 37 GHz for F15 and F16
observations, (Yan and Weng, 2007b)

Nonlinear Parameter (1)
Frequency(GHz) F15 F16
19.35 (V-POL) -1.49910E-5 2.59475E-5
19.35 (H-POL) -5.59600E-6 -9.49400E-6
22.235 (V-POL) -6.61825E-5 7.73750E-5
37 (V-POL) -6.20845E-5 7.23580E-5
37 (H-POL) 1.21750E-6 2.61885E-5

2.3 SSMIS Upper Atmospheric Sounding Channels

The activity is on-going to include correction for doppler shift, zeeman splitting.....
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Figure 8 Time series of F16 antenna temperature biases at frequencies from 19.35 to 37 GHz, which are computed
using linear and nonlinear calibration equations, respectively, (Yan and Weng, 2007b). In the figure, ‘LC’ denotes the
linear calibration while ‘NLC’ the nonlinear calibration. (a) V-POL 19.35 GHz. (b) H-POL 19.35 GHz. (c) V-POL
22.235 GHz. (d) V-POL 37 GHz. (e) H-POL 37 GHz. (f) Residual antenna temperature difference at V/H-POL, after

the nonlinear calibration is applied to both F15 and F16 observations.



2.4 Data Averaging and Collocation

The SSMIS over-samples in the along-track direction. These oversampled data can be used to
reduce the SSMIS random noise. Two approaches are applied to the data averaging to reduce

observation noise.

The first approach is to recalculate calibration target parameters, e.g., Cc, Cw, and Tw, from the
simple average along certain scan lines corresponding to each observation location. For example, in
our current NOAA preprocessor, the scene count (Cs) is first obtained from the antenna temperature

through the linear calibration

(TA _Tc )(Cw B Cc )

C,=C. +
° ¢ (TW - Tc )

(10)

Then, the antenna temperature is recalibrated by using the averaged calibration target parameters

based upon 5 scan lines from an observed pixel, e.g., Ty, ,Cy, ,C, as expressed as follows.

T _ _C o 5 _ 5 _
TA'\ :TC + (TW IC )(C_S CC),TW — ZT\Ni ,CW — ZCWi ,CC —
CW - Cc i=1 i=1 i

5
Ca- (11)

=1

The second approach is to do data averaging over a certain domain by scan lines and pixels per scan

line centered on each field of view according to their approximate weighting functions. We follow
the methodology proposed by UK (Bell, 2006). The average antenna temperature field (T,) is

computed from the antenna temperature field (T, ) computed from (10) as follows.
. N i ' N r_g ) '
Ta= ZWi(P)TAU +0;(p), pi(P))/ZWi (P),w;(p) = eXp(—Z?), r; = distance((l, p),(I + 5" (p), pi(p), (12)
1=1 1=1

where N is the domain size in terms of number of nearest neighbors used for averaging and has

been chosen to 100. Except for UAS channels where 6 = 75.0, ¢ = 25.0 for other channels.

As discussed in section 1, the four instrument subtypes for SSMIS have non-collocated footprints.
Collocated data offers the benefits of simpler and more reliable cloud detection, and also enables

various channels to be used to extrapolate temperatures above the model top. For these reasons the



SSMIS brightness temperatures are collocated in the pre-processor to the grid defined by the LAS
observations. A similar approach to (12) is made in our preprocessor. This is done by using pre-
computed interpolation coefficients. Firstly, each subtype brightness temperature data set is defined
within a 2D array indexed by scan line (I) and scanposition (p). For each of the 60 LAS fields of
view, the five nearest neighbors for each of the other scan types (UAS, IMA and ENV) are used to
construct the antenna temperature at the LAS footprint location. For each channel, for each LAS

footprint location, a weighted average of the four nearest neighbor radiances is computed.

TV =D w(pTL " (1 +8,(p), pi(p).  (13)

3 SSMIS PRODUCT VALIDATION

The SSM/I measures the thermal radiation from the earth’s surface and atmosphere at four
frequencies between 19 and 85 GHz with vertical and horizontal polarizations and has provided the
critical information on global hydrological parameters such as water vapor, cloud water and
precipitation. Some of these products are also assimilated with the outputs from the numerical
weather prediction models to improve global weather forecasts. Thus, as part of our validation
activities, the products retrieved from SSMIS measurements are compared with those from SSM/I
on board F-15 satellite, (Sun and Weng, 2007). As described above, our new calibration
methodology is developed from the SSMI/S Temperature Data Records (TDR) which actually
contains earth-located sets of antenna temperature. In the retrieval of parameters, not only antenna
temperature but also brightness temperature will be used. The brightness temperature (Sensor Data
Record or SDR) is obtained after Doppler correction, cross polarization and spill-over correction (or
antenna pattern correction) on TDR data. Thus, two coefficients are used: 1) the coefficients in
Table 2 which are applied to linearly map the SSMIS to F15 SSMI imaging channels at antenna
temperature level (Calibrated TDR), and 2) the coefficients related to Doppler correction and cross
polarization and spill-over correction (or antenna pattern correction) which are utilized to convert
CTDR to SDR. The latter is provided by Navy Research Lab (NRL). Note that that this linear
mapping also converts SSMI/S 91.655 GHz to 85.5 GHz.

The SSMI/S imaging products are generated using the algorithms developed previously by NESDIS
and other research institutes. The products include rain rate, total precipitable water, cloud liquid

water, surface skin temperature and land emissivity, as shown in Figures 9-13, (Sun and Weng,



2007). Overall, comparisons shows that after NESDIS algorithm is applied for correction on F16

SSMI/S contamination, the retrieval products are very consistent with those from the DMSP F-15.

DMSP F-15 SSMI Cloud Liquid Water
2006-04-17

(@)

DMSP F-16 SSMIS Cloud Liquid Water Path
2006-04-17

- e— : T

205 011 @17 0623 029 035 041 047 053 059 065 NoData Land

Figure 9 (a) Cloud Liquid Water Retrieved from DMSP F-15 SSM/I Imaging Channels on April 17, 2005.(b) Same as
Figure-1 but from DMSP F-16 SSMI/S Imaging.
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Figure 10 (a) Rain Rate Retrieved from DMSP F-15 SSM/I Imaging Channels on April 17, 2005. (b) Same as Figure-3
but from DMSP F-16 SSMI/S Imaging Channels



DMSP F-15 SSMI Total Precipitable Water
2006-04-17

(@)

DMSP F-16 SSMIS Total Precipitable Water
2006-04-17

(b)

Figure 11 (a) Total Precipitable Water Retrieved from DMSP F-15 SSM/I Imaging Channels on April 17, 2005. (b)
Same as Figure-7 but from DMSP F-16 SSMI/S Imaging Channels
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Figurel? (a) Land Surface Temperature Retrieved from DMSP F-15 SSM/I Imaging Channels on April 17, 2005. (b)
Same as Figure-10 but from DMSP F-16 SSMI/S Imaging Channels.
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Figurel3 (a) Land Emissivity at 37.0 GHz Horizontal Polarization Retrieved from DMSP F-15 SSM/I Imaging
Channels on April 17, 2005. (b) Same as Figure-13 but from DMSP F-16 SSMI/S Imaging Channels.



4 IMPACTS OF F16 SSMIS RECALIBRATION

Direct benefits from improved cal/val algorithms will be more satellite data used in NWP models
and by forecasters, resulting in improved NWP analysis fields, forecast score, and climate trend
reanalysis. A good example is the first Special Sensor Microwave Imager and Sounder (SSMIS)
onboard DMSP F16 satellite. Currently, the NWP community has not learned on effective handling
SSMIS sounding data because the measurements display some regional anomalies (see Fig. 2).
STAR is working closely with Fleet Numerical Meteorological and Oceanography Center
(FNMOC) and NRL on developments of improved SSMIS calibration. Our beta version pf SSMIS

calibration can now eliminate the antenna emission and solar contamination on calibration targets.
4.1 Performance of Recalibrated SSMIS Data

Figure 14 displays the SSMIS brightness temperature differences between observations and
simulations at 54.4 GHz, where three types of SSMIS data are used, e.g., NRL TDR data, NESDIS
CTDR data, UK Met Office (UKMO) CTDR data. Figures 15a and 15b are the histograms of
SSMIS/AMSU brightness temperature differences and their standard deviations at channels 2 — 7
(Kazumori et al., 2007). It is found that the NESDIS SSMIS CTDR data at channels 2- 7 has a
comparable quality to AMSU. With a set of quality control (QC) criteria, there are about 44% in
channel 2 and 72% in channel 4 of the data used in the NCEP Girded Statistical Interpolation
System (GSIS), as shown in Figure 16.
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Figure 14 SSMIS brightness temperature differences at 54.4 GHz, where three types of SSMIS data are used, e.g., NRL
TDR data, NESDIS CTDR data, UKMO CTDR data.
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Figure 15 SSMIS brightness temperature differences (observations and simulations) and their standard deviations at
52.8,53.6, 54.4, 55.5, 57.3 GHz, where three types of SSMIS data are used, e.g., NRL TDR data, NESDIS CTDR data,
UKMO CTDR data (Kazumori et al., 2007).
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Figure 16 Number of SSMIS data used in the NCEP Girded Statistical Interpolation System after a certain quality

control criteria, (Kazumori et al., 2007).

4.2 Impacts on NWP Analysis, Forecast and Climate Reanalysis

To demonstrate the impacts of NESDIS SSMIS CTDR data on NWP forecast weather model,
STAR and EMC designed an assimilation experiment of SSMIS data from F16 for the period
August 2 and October 7, 2006, through NCEP Gridded Statistical Interpolation System (Kazumori
et al., 2007). Figure 17 displays the vertical distribution of RMS difference between the ‘Control’
and ‘Test’ results over global areas, where ‘Control’ is defined to be the forecast analysis only with
AMSU data, ‘Test’ the forecast analysis with both AMSU and NESDIS (UK) SSMIS data. As the
RMS difference is negative, the impact of the ‘Test’ data is positive. It is found that NESDIS
SSMIS data produces positive impacts at most of heights over most of global areas. Especially, the

great improvement is detected in the stratosphere.

Figures 18a and 18b show the anomaly correlation using the NESDIS and UK SSMIS data at 500
mb geopotential height over North Hemisphere (NH) and South Hemisphere (SH), respectively.



Figures 19a and 19b are the time series of the anomaly correlation at 500 mb geopotential height
over both NH and SH from August 7 to October 7, 2006. The slightly positive impact is observed in
both NESDIS and UK SSMIS data over NH and SH. Figure 20 displays the impact of NESDIS
SSMIS data on vertical wind vector prediction by using NCEP global forecast model. It is seen that
the NESDIS SSMIS data slightly improves the quality of vertical wind vector prediction. This
further demonstrates the success of NESDIS SSMIS recalibration preprocessor for various LAS

channels.
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Figure 17 Vertical distribution of RMS difference between the ‘Control” and ‘Test’ results over global areas, where
‘Control’ is defined to be the forecast analysis only with AMSU data, ‘Test’ the forecast analysis with both AMSU and
NESDIS (UK) SSMIS data, (Kazumori et al., 2007).
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Figure 18 Anomaly correlation using the NESDIS and UK SSMIS data at 500 mb geopotential height over North
Hemisphere (NH) in (a) and South Hemisphere (SH) in (b), (Kazumori et al., 2007).
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Figure 19 Time series of anomaly correlation using the NESDIS and UK SSMIS data at 500 mb geopotential height
over North Hemisphere (NH) in (a) and South Hemisphere (SH) in (b), (Kazumori et al., 2007).

Besides, using the Community Radiative Transfer Model (CRTM) (Weng et al., 2005), we can now
assimilate radiance observations from cloudy and rainy areas. The new technique produces a
temperature field in Hurricane Katrina that is more detailed, and that better resolves the warm core
of the hurricane, as shown in Fig. 21 (Liu and Weng, 2006), where, the radiance observations are
from the Special Sensor Microwave Imager and Sounder (SSMIS) instrument on the DMSP
satellite. The new data assimilation technique improves the analysis of temperature fields (shown in
the right panels) at two levels in Hurricane Katrina, compared with the same fields in the control
run, in the left panels. The other tests that directly assimilate SSMIS upper stratospheric and
mesospheric sounding channels also show reduced cold biases in NCEP global analysis system (Liu
et al., 2007). The SSMIS brightness temperature can also reveal directly the hurricane warm core
feature (Liu and Weng, 2006) and stratospheric temperature anomalies due to its constant viewing

angle.
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Figure 20 The bias and RMS distribution of vertical vector wind fit to RAOB (radiosonde data) in NCEP global
forecast model analysis products, where either NESDIS SSMIS or UK SSMIS data is assimilated into NCEP global

forecast model.
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Figure 21 Temperature fields from NCEP global weather forecast model, where the radiance observations in the



right panels are from the Special Sensor Microwave Imager and Sounder (SSMIS) instrument on the DMSP satellite.
The new data assimilation technique improves the analysis of temperature fields (shown in the right panels) at two

levels in Hurricane Katrina, compared with the same fields in the control run, in the left panels.

5 STRENGTH AND WEAKNESS
5.1 NESDIS Calibration Strengths

As described above, NESDIS SSMIS recalibration preprocessor processes SSMIS TDR differently
according to lower, upper, and imager channels. Among LAS channels, the antenna emission and
the solar contamination on SSMIS calibration targets are suitably corrected. Thus, the SSMIS
CTDR data at different subgroup channels demonstrates its unique quality. The NESDIS SSMIS
preprocessor has following strengths.

Data Quality and Usage:

(1) The solar radiation striking the surface of the warm load tines has been suitably corrected by
primarily using the FFT analysis, so the SSMIS data with solar intrusion may be saved, which is
30 ~ 40 % of the data. This significantly increases the usage of SSMIS data in the satellite data
assimilation system (Fig. 16).

(2) The residual error in SSMIS observations at channels 3 — 7 is relatively small (Figs. 15 and 16).
The good performance of those channels results in much improvements in stratosphere in NCEP
global forecast model (Fig. 17), and results in a slightly improvement in vertical wind prediction
(Fig. 20).

(3) SSMIS imager channels (channels 12- 18) have been calibrated from the Simultaneous Conical
Overpasses observations. With the remapping coefficients in Table 2, SSMIS observations at
seven imager channels can be converted to F15 SSMI channels. Importantly, the nonlinear
effect on those imager channels has been demonstrated to be important in future SSMI and
SSMIS reprocessing.

Data Impact on Global Forecast Model:

An obviously positive impact is detected in the stratosphere; the impact is also positive or neural
in the lower troposphere.

Data Integrity:




The temperatures in the TDR file have been modified in a manner that the original integrity of the
data is preserved. The Fourier filtered gain corrections can be backed out for subsequent analysis.
The reflector emission correction is applied downstream using the estimated reflector face

temperature and the frequency dependent emissivity.

Robustness:
The IDL preprocessor has been running at FNMOC for over a year. It runs in about 6 seconds per

rev on an older Sun blade processor.
5.2 NESDIS Calibration Weakness

(1) Slightly large noise in Channel 2.

(2) Upper channels are to be assessed.
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